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ABSTRACT

By moving monolithic network appliances to software running
on commodity hardware, network function virtualization allows
flexible resource sharing among network functions and achieves
scalability with low cost. However, due to resource contention,
network functions can suffer from performance problems that are
hard to diagnose. In particular, when many flows traverse a complex
topology of NF instances, it is hard to pinpoint root causes for a
flow experiencing performance issues such as low throughput or
high latency. Simply maintaining resource counters at individual
NFs is not sufficient since the effect of resource contention can
propagate across NFs and over time. In this paper, we introduce
Microscope, a performance diagnosis tool, for network functions
that leverages queuing information at NFs to identify the root causes
(i.e., resources, NFs, traffic patterns of flows etc.). Our evaluation on
realistic NF chains and traffic shows that we can correctly capture
root causes behind 89.7% of performance impairments, up to 2.5
times more than the state-of-the-art tools with low overhead.
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1 INTRODUCTION

Network function virtualization (NFV) transforms hardware mid-
dleboxes to software running on commodity hardware — called
Virtual Network Functions (VNFs), thereby bringing flexibility and
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agility to network operations. As a result, NFV has become popular
in both industry and research [1, 9, 38, 48, 49]. For example, Internet
Service Providers purchase network function solutions (e.g., NATSs,
Firewalls, VPNs) developed by different vendors, then run them
in chains or DAGs (Directed Acyclic Graph) to serve traffic from
various users.

Since VNFs process packets in software, there are inevitably
more performance variations (e.g., throughput variations, high tail
latency, jitters) than hardware platforms. These performance prob-
lems have a significant impact on service-level agreements and user
experiences [35]. A survey we carried out with network operators
has revealed various types of performance problems encountered
in real-world NFV deployments (see § 2).

When performance problems emerge, the first question is who
(users, ISP operators, NF vendors) is responsible for the problems.
The process of finding answers often leads to blame games amongst
these parties because many performance problems are intermittent
and thus not easily reproducible. Furthermore, each party lacks
full access to the system for debugging (e.g., ISPs cannot access NF
vendor codes, while vendors may not know user traffic).

Let us use an example to highlight these challenges. Suppose
we have an NF chain consisting of a Firewall followed by a VPN.
Assume that some packets experience long latency at the VPN.
Intuitively, operators start by blaming the VPN vendor for the
problem. However, no problems are observed when the VPN is run
without the Firewall. As a result, operators start to suspect that it is
user traffic that is the root cause of the problem. Sometimes bursty
traffic may lead to queue buildups at the VPN which results in a
long latency. However, this turns out not to be the case this time.
Rather, as we find in the end, this problem is caused by a bug in
the Firewall that inflates the time it takes to process some flows,
resulting in intermittent traffic bursts towards the VPN.

In practice, this problem is much more complex as user traffic
goes through a variety of different NF chains. Many fine time-scale
events occur in each NF (e.g., interrupts, cache misses, context
switching) that could cause intermittent performance problems,
whose effects may propagate across NF instances. Although there
has been significant work dealing with NF performance optimiza-
tion [18, 29, 32, 34, 39, 43, 51, 55], load balancing [23, 27], and auto-
scaling [20, 44, 52], performance problems in NF chains still abound
since it is hard to carefully engineer all the components to build a
fully-optimized chain. And even if we succeed in doing so, we still
need to optimize performance every time software, hardware, or
NF chain configuration changes [13].

In this paper, we propose Microscope, a performance diagnosis
tool that identifies the causal relations in a DAG (Directed Acyclic
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Figure 1: We send CAIDA traffic [2] to a Firewall. At 570 us, we
inject a bursty flow which lasts 340 ps. (a) All the other flows arriv-
ing in the next 3 ms experience long latency. (b) The input queue
quickly builds up but then takes around 3 ms to drain.

Graph) of NFs without any knowledge of their implementation.
With the causal relations, we can identify the root cause(s) of per-
formance problems such as misconfiguration and bugs, traffic anom-
alies, system interrupts, load imbalances, etc. There have been many
research papers dealing with the identification of causal relations
for large-scale distributed systems [16, 19, 36, 41, 44]. For example,
NetMedic [36] infers causal relations by computing the probabili-
ties of monitored behaviors (e.g., resource usage, processing rate)
and problems (e.g., long latency) falling in the same time window.
However, this work is not a good fit for NFs because NFs process
packets in tens to thousands of microseconds and thus can easily
be affected by the fine-timescale network (e.g., traffic bursts, queu-
ing) and system behaviors (e.g., interrupts, context switching, data
copies [37]). Correlating fine time-scale abnormal behaviors with
problems is challenging because there can be many episodes of
such behaviors and each episode can have a lasting impact. So it is
hard to place the related behaviors and problems in the same time
window. For example, Figure 1 shows that a bursty flow of 300 ps
can impact flows that arrive in the next three milliseconds because
of the long time the queues take to drain. While this happens, the
impact of queuing may propagate to other NFs and flows (see more
examples in § 2).

To address this challenge, we observe that it is through queues
that adjacent NFs in a chain interact with one another. An upstream
NF affects its downstream NF by changing the traffic rates to the
queue, while the processing rate of the downstream NF affects the
rate at which the queue drains. Moreover, as shown in Figure 1,
a queue essentially “propagates” the impact of a previous event
(e.g., traffic bursts) to future flows. Therefore, Microscope directly
collects queuing information with low overhead. It then performs
a queue-based causal analysis that quantifies the impact of flows
and NFs on packet delay. Microscope also aggregates packet-level
diagnosis into relational patterns which allow operators to auto-
matically focus on the right flows and NFs.

Our evaluation demonstrates that Microscope can correctly cap-
ture 89.7% of all performance problems emanating from a variety
of reasons such as traffic bursts, interrupts, NF bugs, etc., which is
up to 2.5 times higher than the state-of-the-art tools. Microscope
achieves this while keeping the runtime overhead quite low.
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2 MOTIVATION

In this section, we show a few examples to highlight the challenges
of diagnosing performance problems in NF chains. We next dis-
cuss our survey with network operators which corroborates these
challenges.

2.1 Challenges of NF Diagnosis

We consider a DAG (Directed Acyclic Graph) of NFs where NFs
can be provided by one or more vendors. We assume no access to
NF implementation. There are NICs (SR-IOV), hardware switches,
and/or software switches [10, 11, 30] that direct user traffic to NFs
and forward traffic between NFs!. Note that one NF type may run
multiple NF instances on multiple cores on the same or different
servers to scale to traffic growth. For the rest of the paper, we use
the term NF to refer to an NF instance unless noted otherwise.
Our goal is to find the causal relations between the NFs/flows with
intermittent? performance problems (e.g., low throughput and long
tail latency).

The state-of-the-art approach for diagnosing causal relations

is time-based correlation [16, 19, 36, 41, 54]. They are based on
the assumption that abnormal behaviors happening in the same
time window as the problem are more likely to be the root causes.
This approach, unfortunately, does not work for NFs that exhibit
abnormal behavior at fine time-scales (e.g., traffic bursts, CPU in-
terruption, context switching), and where such behavior can have
lasting impacts. Next, we provide a few examples to demonstrate
the challenges with such scenarios.
1. Lasting impacts of microsecond-level behaviors. A flow
may experience performance problems when it faces an abnormal
behavior such as a traffic burst. However, the impact may last
long after the flow finishes. As shown in Figure 1a, although the
bursty flow finishes at time 1 ms, all the new flows that arrive up
to 3 ms later still experience a long latency. The reason is shown in
Figure 1b. The queue takes about 3 ms to drain because the Firewall
is busy keeping up with the incoming flow rates.

In practice, in addition to traffic bursts, there are many other
fine time-scale abnormal behaviors (such as interrupts, context
switching etc.) that happen all the time at different NFs. The impact
of these behaviors lasts for different time periods depending on
the severity of resource contention, incoming traffic rates, and
processing rates of NFs. This makes it challenging to define the
right size for time window based correlation: a small window misses
the correlations with behaviors whose impacts last longer than
the window size, while a large window ends up including lots of
unrelated behaviors.

2. Lasting impact propagates across NFs. A few fine time-scale
behaviors at one NF may affect packets at another NF which has
no spatial or temporal correlation with the first NF. To illustrate
this, we send CAIDA [2] traffic through a chain consisting of a
NAT followed by a VPN. We send another flow A directly through
the VPN (see Figure 2a). Figure 2b shows that flow A at the VPN
experiences low throughput during [1.5ms, 2.3ms] time interval. If

!For simplicity, we assume the switch is not the cause. We can easily treat the switches
as another NF in the system for diagnosis if needed.

2Qur solution also works for persistent problems. But persistent problems are much
easier to diagnose and can use existing tools (e.g., PerfSight [53]).
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we do time-based correlation, we may think the low throughput of
flow A is caused by the surge in traffic from the NAT. But we send
the CAIDA traffic at a constant rate throughout the experiment. In
fact, the root cause is that the NAT experiences a CPU interrupt
between [0.5ms, 1.3ms], and hence is unable to send any traffic to
the VPN during this time. After the interrupt, the NAT resumes
processing and sends a burst of packets to the VPN, which causes
the throughput drop for flow A.

The queue at the VPN illustrates this phenomenon (Figure 2c):
The traffic burst from the NAT builds up the queue at the VPN start-
ing around 1.5 ms, affecting flow A packets arriving from then on,
although these packets only traverse the VPN, and do not overlap
temporally with the interrupt at the NAT.

In practice, the performance depends on not only the abnormal
behaviors at different NFs or traffic sources, but also the queue
occupancy at these NFs when such behavior occurs. Therefore, it is
not enough to identify causal relations based on temporal or spatial
correlations.
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Bursty traffic after interrupt

(a) NAT’s interrupt affects VPN’s performance
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Figure 2: Impact propagation across NFs

3. Different impacts from similar behaviors. The same abnor-
mal behavior may have a different impact on performance. Figure 3a
shows a NAT and a Monitor both sending traffic to a VPN. The
NAT sends traffic at 0.25 Mpps while the Monitor sends traffic at
0.05 Mpps, both with 64-byte packets. We also send flow A to the
VPN directly. Figure 3b shows that all the flows experience dif-
ferent levels of packet losses during [1.6 ms, 2 ms] interval at the
VPN. Similar to the previous example, this is caused by interrupts
occurring at upstream NFs (the NAT and the Monitor). However,
it is hard to identify which upstream NF contributes more to the
problem, because both interrupts happen before the packet loss
period. The input rate changes in Figure 3c helps identify the causal
relations. The input rate from the NAT increases more than that
from the Monitor. This means the NAT’s interrupt is the dominant
contributor to packet losses.

The upshot is that it is not enough to simply correlate behaviors
of components together, especially when there are many concur-
rent microsecond-level abnormal behaviors. Rather, we need to
quantify the impact of these behaviors. In the example, in addition
to identifying those packet losses are correlated with interrupts at
both the NAT and the Monitor, we need to quantify each interrupt’s
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contribution to change in input rate, so that we can focus on the
most important problems.
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Figure 3: Different impact of similar behaviors

2.2 Survey on Performance Diagnosis

To understand the reality of performance problems and diagnosis
of network functions today, we conducted a survey with 19 net-
work operators (from ISPs, data centers, and enterprises) in Janu-
ary 2020. Our complete survey form and results are published at [7].
Among the survey respondents, four belonged to small networks
(< 1K hosts), six to medium networks (1k-10K hosts), four to large
networks (10K-100K hosts), and the remaining five to extra-large
networks (>100K hosts). Below we describe the main findings.

These operators often face performance problems. In particu-
lar, five operators said they have to diagnose 10-100 performance
problems monthly, while four of them spend more than 12 hours
on performance diagnosis per month.

These problems are hard to diagnose because of diverse symp-
toms and root causes. Typical symptoms include: multiple NFs
experience problems (e.g., low throughput) at the same time (seven
operators experienced this), when the problems are intermittent
(nine operators), and when the problems only happen for one user
but not others (seven operators). Typical root causes include re-
source contention (7 operators saw this), traffic bursts (12 operators),
interrupts (5 operators), and other NF bugs (15 operators). One type
of tricky problems is caused by interactions between NFs. That
is, the problem manifests only when multiple NFs are running to-
gether, not while debugging individual NFs in isolation. There are
many different causes, such as upstream NFs’ output traffic affect-
ing downstream NFs (6 operators saw this), misconfiguration on
one NF affecting another NF (8 operators), or resource contention
(3 operators).

The top requirements for performance diagnosis tools are high
accuracy (9 operators) and low overhead (12 operators). Moreover,
many operators would like a ranked list of root causes (12 opera-
tors) where each cause indicates aggregated flows (7 operators) or
network functions (9 operators).
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3 MICROSCOPE KEY IDEAS

Microscope is a performance diagnosis tool that identifies causal

relations for performance problems in a DAG of NFs. We make the

following key design decisions in Microscope:

Leverage queuing periods to understand long-lasting impacts
of problems at each NF. Since NFs are developed by different

vendors and we do not have access to NF internal codes, we propose

to focus on the queues between NFs to observe causal relations

between NFs and with traffic sources. Our examples in § 2 show

that queues can indicate the lasting impact of anomalous behav-
iors, their propagation across NFs, and quantify the impact from

multiple behaviors.

Our key insight is that when a packet experiences a long queue,

it is not only because of the current packets in the queue, but also
because of all the previous packets that contribute to the queue
buildup but already get processed. This is to say that if we had fewer
packets, the current queue length would be shorter. Therefore, we
introduce a queuing period which defines the time period from
the time when a queue starts building (from zero packets) to the
current time. As an example, consider Figure 1b, where for each
victim packet p arriving at time ¢, the queuing period of p starts
from 570 ps to t. By considering the entire queuing period, we can
determine the root causes that may not temporally overlap with
the observed problem.
Quantify causal relations based on packets received during
the queuing period: Our next step is to understand the causal
relations between anomalous behaviors at NFs and packets in the
queue. Generally speaking, packets are stuck in a queue for two
reasons: high input rate from upstream NFs or slow processing
rate at the current NF. We tell whether it is upstream NFs or the
current NF that contribute to the queuing and by how much, by
comparing the input rate or processing rate of an NF during the
queuing period to the peak processing rate of the NF. For example,
in Figure 2c, we attribute the queue buildup at the VPN to the NAT
because of the high input rate from the NAT. In Figure 3c, we tell
the relative contribution of the NAT and the Monitor by checking
their respective input rate changes.

Furthermore, the impact of abnormal behaviors is propagated

across NFs through packets. Therefore, we propose to trace back
the journey of all the packets in the queue and analyze how quickly
these packets are processed at each NF.
Aggregate causal patterns: Given many fine timescale anoma-
lous behaviors and several performance problems (e.g., tail latency
packets), it is important for operators to focus on the most im-
portant problems and root causes. We propose a causal relation
aggregation algorithm that automatically generates a ranked list of
causal patterns with scores: <culprit flow aggregates, culprit NF> —
<victim flow aggregate, victim NF>: score. This is based on AutoFo-
cus algorithm [25], but we modify it to aggregate causal patterns
instead of traffic clusters.

4 MICROSCOPE DESIGN

Microscope collects packet’s timestamps, queuing, and flow infor-
mation between NFs without accessing internal NF codes in the
runtime (Table 1). Based on the collected information, Microscope
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Name Explanation
. timestamps when an NF reads or
Timestamps .
writes a batch of packets to each queue
. the batch size when the NF reads
Batch size

a batch of packets from the queue
e.g., source, destination IP
addresses and port numbers

Packet IDs e.g., IPID
Table 1: Information collected by Microscope during run-
time

Flow information

Local diagnosis (sec 4.1) Propagation diagnosis (sec 4.2)

High input rate?
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Figure 4: Microscope Architecture

selects victim packets which experience high latency, low through-
put, or losses, and diagnose their root causes.

Figure 4 shows that Microscope performs offline diagnosis in
four steps: (1) For each victim packet at an NF where the packet
experiences local abnormal performance, Microscope performs lo-
cal diagnosis to understand whether the root cause is at the local
NF or upstream NFs. The key idea is to leverage queuing periods
to tell if the packet is delayed by low processing rates at the local
NF or high input rates from upstream NFs (§4.1). (2) If the problem
of the victim packet is caused by high input rates, Microscope per-
forms propagation analysis to identify the culprit upstream NFs.
Microscope inspects the packets in the queuing period (i.e., PreSet
packets) and analyze how the timespan of these packets change at
each NF (§4.2). (3) When an NF contributes to the high input rate
of the Preset packets, this NF could also experience performance
problems. Therefore, Microscope recursively diagnoses this NF
using steps (1) and (2) (§4.3). (4) Microscope aggregates causal
relations between culprit <packet,NF> to victim <packet,NF> into
a small list of causal relation patterns using AutoFocus algorithms
(§4.4). We now describe each step in detail.

4.1 Local Diagnosis

We focus on victim packets which experience bad performance (e.g.,
high latency or low throughput at the 99th percentile) or simply
get lost (i.e., when we do not have records for them at some NFs).
For each victim packet, we look at all the NFs on its path where
its local performance is abnormal. Similar to NetMedic [36], we
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Figure 5: Diagnosing lasting impact at an NF (Section 4.1).

claim abnormality if the NF’s performance is beyond one standard
deviation computed over recent history.

Suppose a victim packet p has abnormal performance (e.g., a long
latency) at NF f. Our goal is to identify all the abnormal behaviors
(at f or upstream NFs) which impact the packet p. These behaviors
do not have to overlap with packet p in time.

The direct cause of p’s long latency is the queue with pending
packets when p arrives at f. Thus we consider the queuing period
from when the first packet is enqueued up to the time at which
p arrives at the NF (Figure 5). By considering the entire queuing
period, Microscope learns the whole history of how the queue is
built up. Therefore, even if the culprits for the problem do not
overlap with the victim packets in time, Microscope can still detect
the cause of the problem.

Let T be the length of the queuing period at NF f. Let n;(T)
and n,(T) be the number of packets arriving and getting processed
at the NF during time T. Figure 5 shows that the queue builds up
because the input rate is higher than the processing rate. This can
happen due to two reasons: (1) High input rate: the input rate is
higher than the peak processing rate; (2) Low processing rate: the
processing rate of the NF f is lower than its peak processing rate
(e.g., due to cache misses, CPU interrupt). We define r; as the peak
processing rate of an NF with the same hardware/software settings
in the NFV topology.>

By comparing n;(T) and n,(T) with the expected number of
packets (r; - T), we can quantify the two reasons. We use an input
workload score Sif to represent the number of extra input packets,
compared to the number of packets that can be processed at the
peak rate during a period of T.

ni(T)—r;i-T
S{={ i ) i

We use a processing score (Sp) to represent the number of fewer
packets being processed, compared to the number of expected pack-
ets processed during a period of T.

S _
-

3We can measure the peak processing rate r; by stress testing the NF offline with the
same hardware and software settings or collecting the peak processing rate in history
when running the NF in production.

ifni(T)y>r;-T

ifni(T) <ri T )

ri - T —np(T)
ni(T) = np(T)

itni(Ty>ri - T

ifni(T) <ri-T (2)
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Note that we define S{ and Slj; to make sure they together cover
all the packets that contribute to the queue buildup in T. That is,

S{ + S{; =n; — np and n; — np is equal to the queue length.
4.2 Propagation Diagnosis

Suppose when we diagnose a victim packet p at an NF f, the S{
is positive (e.g., SiVPN > 0 in Figure 8). It means that the input
workload contributed to the queue build up at f. The reason behind
higher input workload could be any of the upstream NFs (which
could have ramped up their processing rates) or the traffic sources
themselves. In this section, we describe the propagation analysis
algorithm we run to identify the causal relations amongst NFs.

Assume when p arrives at NF f, the queuing period has lasted for
T.During T, there are n;(T) packets coming from upstream. We call
this set of packets PreSet(p). Our goal is to understand the history
of PreSet(p) and why these packets take T time at NF f. We trace
back to the upstream NFs that PreSet(p) traverses. To diagnose, we
define timespan of PreSet(p) at an NF as the time between the first
and last packet that leaves the NF. Let Tsource, Ta, T, and T¢ be
the timespan of PreSet(p) at traffic source, NF A, NF B, and NF C
respectively. We first discuss the case where PreSet(p) traverses a
chain of NFs, and then generalize to a DAG of NFs.

PreSet(p) traverses a chain of NFs. Suppose PreSet(p) tra-
verses a chain of NFs (A, B, C, f). There could be many fine-
timescale abnormal behaviors happening at each NFs. For example
in Figure 6, there is an interrupt at A, and cross traffic at C. When
PreSet(p) arrives at A, A has an interrupt so these packets have to
wait, and are processed back-to-back after the interrupt finishes.
This squeezes out the inter-packet gaps, so the timespan reduces
from Tsoyrce to T4. When they arrive at B, B is slower than A, so it
takes a longer time to process these packets, increasing the times-
pan to Tg. When they arrive at C, there is a queue, so packets in
PreSet(p) have to wait, and their timespan is squeezed to Tc. These
packets cause a bursty input to f, because f cannot process them in
Tc time interval. Overall, T¢ is smaller than the expected timespan

of the n;(T) packets (Texp = ni(T)/ rlf ) A smaller timespan causes
a traffic burst at f, which affects p. So we need to account for the
reduction from Texp to Tc.

Note that Microscope only cares about the overall timespan,
not the distribution of the n packets within the timespan. This is
because, our goal is to diagnose victim packet p at f, no matter
how the packets in PreSet(p) distribute within the timespan at
each upstream NF, they cause the same effect at f. Moreover, the
timespan is easier to measure and compare across NFs than packet
distributions.

The next step is to attribute this timespan reduction (Texp—Tc) to

the source, NF A, B, and C. We split score S{ proportionally based on

their relative timespan reduction from previous hops. For example,
s —C : Tg-Tc

C’s score S gets a fraction Toup-Tc

timespan by T — Tc out of the total reduction Texp — Tc. Similarly,

of S{ , because it reduces the

. Texp—T.
the source’s score S/ "SOUrce gets a fraction of ~S2——Sowree 1f
Texp’TC

sfesource s ahove zero, we define PreSet(p) as the culprit packets
at the source.
The timespan is not always decreasing. For example, B increases

the timespan from T4 to Tg. In this case, we treat the timespan
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Figure 6: Timespan analysis (Section 4.2). The width of a packet
represents its packet processing time; i.e., the wider width means a
slower NF.

reduction by B’s previous NF (i.e., A) to be Tsoyrce — IB, because
this is the effective reduction from f’s perspective. So A’s score
sfeA gets a fraction TST():);+;CTB of Sif, and B’s score SF< B is set
to zero.

PreSet(p) traverses a DAG of NFs. If PreSet(p) goes through
a DAG from the source to f, these packets go through different
paths. So there is a set of paths (PreSetPath(p)) that PreSet(p) goes
through. For each path pathy. in PreSetPath(p), we only consider
the subset of PreSet(p) that goes through pathy, and assign scores
to the source and NFs on pathy in a similar way as the chain case.

The key question to generalize the chain algorithm to each path
in the DAG is how to set the expected timespan Ty for each path.
Although each path has fewer packets than PreSet(p), it does not
mean that the expected timespan is smaller. This is because packets
on different paths usually interleave. When they fully interleave,
they are expected to have the same timespan as PreSet(p), which
is ni(T)/ r{ (the same as the Ty of the chain case). On the other
hand, if packets on different paths do not fully interleave, the times-
pan is smaller than Te . This means one or more paths are more
bursty than they should be and thus may be the root causes the
performance of p (which is aligned with our timespan analysis). In

conclusion, Texp of each path should equal to n;(T)/ rlf .

Each NF (and the source) may get multiple scores, one from
each path that it belongs to. The question is how to merge the
scores of these NFs across paths. Simply summarizing these scores

do not work because the sum may exceed S{ . The reason is that
when the packets from multiple paths merge at NF f, the timespan
after the merging may be larger than the timespans before the
merging. So the timespan reduction on a single path may be larger
than the timespan reduction for the whole PreSet(p). Therefore the
summation of scores across all paths may be higher than S{ . In this

case, we just proportionally scale down all the scores to match Slf .

4.3 Recursive diagnosis of PreSet packets

If some upstream NF reduces the timespan of PreSet(p), the reason
could also be local processing at the upstream NF of the input traffic.
For example, in Figure 6, A reduces the timespan because of a local
interrupt, while C reduces the timespan because of the queue built
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Figure 8: Diagnosing the example problem in §1.

up by other packets (the grey packets). The reason could also be a
mixture of both local processing and input traffic in practice.

To understand them quantitatively, we recursively apply tech-
niques in § 4.1 and § 4.2 on the queuing period when the first packet
of PreSet(p) arrive at each NF (e.g., the period of the grey packets
at C in Figure 6). This recursive process is illustrated in Figure 7.
The recursion terminates when no NF with positive S; remains or
when we reach the source.

We use the example in § 1 again to illustrate the need of recursion
(see Figure 8). To understand why the Firewall reduces the timespan,
we recursively analyze the queuing period after the arrival of the
first packet of PreSet(p) at the Firewall. We find that the queuing
is due to the slow processing of packets (SXPN‘_FW > 0), which
we call culprit packets. Later we use pattern aggregation (§ 4.4) to
determine which flows lead to such slow processing.

4.4 Pattern Aggregation

Given many packet-level causal relations, our next step is to ag-
gregate them into causal relation patterns operators can act on.
For example, if we can narrow down that certain flow aggregates
always face problems at a particular NF, the vendor of this NF can
investigate the configuration and the processing of these flows.
Our pattern aggregation takes the packet-level causal relations
<culprit packets, culprit NF>— <victim packet, victim NF>: score>
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as input, and generates aggregate patterns in the form of <culprit
flow aggregates, culprit NF set>— <victim flow aggregates, victim
NF set>: score. Here a flow aggregate is defined by the five-tuple
derived from source IP prefix, source port range, destination IP
prefix, destination port range, and protocol set; one can also extend
flow aggregates to cover other packet fields. An NF set includes not
only NFs but also input traffic sources.

Our pattern aggregation problem is similar to AutoFocus [25]
which automatically aggregates multi-dimensional flows into traf-
fic clusters that best represent the current traffic (i.e., hierarchical
heavy hitter). Our goal is to find pattern aggregates along many
dimensions which include culprit flow aggregates, culprit NF set,
victim flow aggregates, victim NF set, where the flow aggregates
further include five tuples or more and the NF set aggregates NF
instances of the same type. We determine significant pattern aggre-
gates which contributes to a large portion of the score (e.g., above
a threshold th), after excluding descendants of each of these aggre-
gates (similar to hierarchical heavy hitters [25]). Note that a higher
threshold th leads to fewer details in the report. In practice, opera-
tors can adjust the aggregation threshold th, and thereby trade-off
succinctness of the report with the amount of detail in it.

A key challenge is that we have far more dimensions than traffic
aggregates. To speed up the aggregation process, we leverage the
causal relation between culprit packets/NFs and victim packets/NFs.
Most of the time, in a significant pattern aggregate, its culprit
flow aggregate is also a significant flow aggregate if we just run
AutoFocus on the culprit flow fields. The same observation applies
to victim flow aggregates. This is because a victim packet is affected
by a limited set of packets and a culprit packet set affects a limited
number of victim packets.

Our pattern aggregation algorithm works in three steps: First,
we group packet-level causal relations by culprit packets and cul-
prit NFs. For each <culprit packet, culprit NF> we run AutoFocus
on <victim packet, victim NF> dimensions and generate a few in-
termediate pattern aggregates with aggregated victim packet/NF
fields. Next, we run AutoFocus again on the intermediate pattern
aggregates to generate the final significant pattern aggregates. Our
evaluation shows that this decoupling significantly reduces the
aggregation time without losing any significant patterns.

Some problems may be intermittent but happen repeatedly (for
example in Section 6.4, big-triggering flows arrive intermittently
to the Firewall, which cause significant performance problems).
Our aggregation algorithm can effectively find out these repeating
problems over the timeframe when the operator runs Microscope,
since they usually share some patterns.

5 IMPLEMENTATION

Microscope includes a data collector in the runtime and an offline
diagnosis module.

Runtime information collection. We implement the data col-
lector in the DPDK library with about 200 lines of code. Thus we
can support any NF using DPDK as the packet I/O library. DPDK
has a receive function and a transmission function, which handle
the input and output queues of an NF. We instrument these func-
tions to collect the required runtime data (see Table 1). It is feasible
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Figure 9: Resolving IPID ambiguity using order of packets.

to extend our collector to other packet I/O libraries (based on VNF
vendor’s choice) like netmap [50] or VPP [11].

To minimize the performance impact of Microscope on the NF,
we keep the overhead on the critical path of the execution to a min-
imum. Instead of dumping to the hard disk directly, Microscope’s
collector writes the data to shared memory where it is picked up
by a standalone dumper for storing on the disk.

For each packet, we record the five-tuple and the IPID, so a
packet is uniquely identified across different NFs. Since DPDK
fetches packets in batches (the maximum batch size is typically 32
packets), we also record a per-batch timestamp as well as the size
of the batch. These data are sufficient for identifying the queuing
period, because if the batch size is smaller than the maximum size,
the queue must have been cleared, which is an indication of the
start of a new queuing period (we will discuss cases where the
queue is mostly non-empty in Section 7).

Directly collecting the data incurs a high overhead because we
need more than 15 bytes per packet. We compress the data down to
around two bytes per packet. The intuition is that the same packet
traverses multiple NFs, so we just need to keep the five tuples of
each packet at the end of the NF graph. For all other NFs, we only
need to record the IPID of the packet.

However, this leads to challenges in reconstructing the trace
of each packet (mapping the records of the same packet across
different NFs), because different packets may have the same IPID in
different NFs and we get confused about the traces of these packets.
We resolve this ambiguity by using three pieces of “side-channel”
information: the paths of packets, the timing of packets, and the
order of packets.

(1) The paths of packets. We reconstruct each packet trace from the
last NF where we record the five tuples backward to the source. This
means at each step, we only need to look into packet records at the
immediate upstream NFs, which reduces the chances of overlapping
with other packets with the same IPID. Note that this filter does not
work for NFs that assign path dynamically such as load balancers.
(2) The timing of packets. Since the delay from an upstream NF
to a downstream NF is bounded, we can just consider mapping
records on the two NFs that are within the maximum delay (i.e.,
queuing delay plus propagation delay). Since the propagation delay
is small and the maximum number of packets in a queue in DPDK
is 1024, out of 65,536 possible IPIDs, the chances that of two packets
colliding with the same IPID in the delay bound is small.

(3) The order of packets. The intuition is illustrated in Figure 9 where
the IPID 5 has ambiguity. However, if IPID 3 is unambiguous, we
know that the left IPID 5 in the downstream queue cannot come
from upstream 2 if packet ordering is to be preserved. This allows
us to resolve the ambiguity for IPID of 5.

Offline diagnosis. The offline diagnosis module includes 6000
lines of code implemented in C and C++. Operators define the
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victim packets as those that encountered latency above a threshold,
throughput below a threshold, or got lost. For these victim packets,
Microscope performs the steps outlined in Figure 4 and outputs a
list of causal relation patterns.

For each victim packet, we need to recursively diagnose the
first packet in the queuing period at each NF (see § 4.3). In the-
ory, the maximum number of recursions is the sum over the num-
ber of upstream NFs for each NF f (i.e.,, 2.¢ N_upstreamys, where
N _upstreamy is the number of upstream NFs for an NF f). In prac-
tice, for our 16-NF evaluation topology (§ 6), we need a maximum
of five recursions. This is because only a small number of culprit
NFs are causally related to a victim.

6 EVALUATION

In this section, we evaluate the accuracy and performance of Micro-
scope. Our evaluation shows that Microscope can correctly capture
89.7% of all performance problems of various types (traffic bursts,
interrupts, NF bugs, etc.), up to 2.5 times more than the state-of-
the-art tools. We also demonstrate that this can be achieved with a
very small overhead during runtime information collection.

6.1 Setting

Network function chain. As shown in Figure 10, we run an NF
chain consisting of four types of NFs: NATs, Firewalls, Monitors,
and VPNs. This chain is a small-scale replica of commonly used NF
chains in practice [4, 8, 48]. Incoming traffic is load balanced at flow
level based on the hash of packet header fields. If a flow matches
a rule at the Firewall, it is forwarded to the Monitor, otherwise it
directly traverses to the VPN.

7
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Figure 10: Network function chain used in evaluation

In our evaluation, all NFs are based on DPDK 18.08 [3]. We use
NATs, Firewalls and VPNs provided by Click-DPDK [40] while we
implemented the Monitor ourselves using the DPDK library. We
run the NFs on Linux servers, and each NF instance is a single
process bound to a specific physical core, in order to provide the
best performance. Each NF uses SR-IOV for network I/O.
Network traffic trace. We use CAIDA [2] traces as traffic in
our evaluation; traces are replayed using MoonGen [24] traffic
generator. Since the software NF performance is mostly determined
by the packet rate, not the byte rate, we set packet-size to 64 bytes
to subject our system to high packet rates.

Aggregate threshold. We use 1% as the threshold in the aggrega-
tion algorithm, with which we think Microscope reports a reason-
able number of causal relation patterns in our evaluation results.

Alternative approach. We compare Microscope with NetMedic.
Since NetMedic is a diagnostic tool on general networked systems,
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Figure 11: Overall diagnostic accuracy of Microscope and
NetMedic. The x-axis represents the cumulative percentage
of victim packets, and the corresponding y-axis represents
the rank of the correct cause. For example, if the curve goes
through point (x, y), it means for x% of victim packets, the
rank of the real cause is no larger than y.

we modify NetMedic to adapt it to our NFV system. NetMedic
uses a template of graphs to model system components and causal
relationships between them. In our context, the nodes are NFs,
and the edges exist between NFs that directly exchange traffic
(the DAG in Figure 10). NetMedic captures various resource usage
and performance metrics for each component in the graph. In our
case, we monitor all variables related to NF performance, including
CPU usage, memory usage and traffic rates for each NF. NetMedic
correlates abnormal behavior occurring in the same time window.
In NFV systems, the packet delay is usually very small, so we set
the time window to 10 ms, which we find to be the best window
size in our evaluation scenarios. We not only compare accuracy
between Microscope and NetMedic, but also evaluate accuracy
when NetMedic is configured with different window sizes.
Evaluation platform. We run our evaluation on two hosts. Host 1
runs the MoonGen traffic generator, while the entire NF chain
(consisting of a total of 16 NFs) runs on host 2. Host 1 is a Dell
R730 server, having 10 cores, 32 GB memory, and a two-port 40
Gbps Mellanox ConnextX-3 Pro NIC. Host 2 is a Dell T640 server,
having two CPU sockets, each consisting of 10 cores. It has 128 GB
memory, and a two-port 40 Gbps Mellanox ConnextX-3 Pro NIC.
Both servers run Ubuntu 18.04 Linux OS. As a traffic generator,
MoonGen dynamically allocates CPU cores to keep up with the
traffic rate in the traffic trace. Each NF instance, on the other hand,
is bound to a dedicated core.

6.2 Diagnostic Accuracy

Methodology. We compare the accuracy of Microscope and NetMedic.

Ideally, we would like to run evaluation on real problems, but un-
fortunately ground truth is often hard to come by in such scenarios.
So we evaluate the accuracy by injecting problems ourselves. To
make sure the ground truth is clear, we generate the CAIDA traffic
at a moderate rate (1.2Mpps) so that other problems (i.e., the ones
that are not injected) are much less significant and frequent than
the injected ones.

Specifically, We inject three kinds of problems: (1) Traffic bursts:
We randomly select 5 five-tuple flows and inject traffic bursts at the
source with a burst size randomly chosen from 500 to 2500 packets.
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Figure 12: Diagnostic accuracy of Microscope and NetMedic for each injected culprit.

(2) Interrupts: We randomly select an NF instance and inject an
interrupt with a duration randomly chosen between 500 and 1000
is. (3) NF code bugs. We inject a bug at a random firewall instance
that processes specific incoming flows at a low rate (0.05 Mpps). We
inject flows that trigger this bug. The flow size is randomly chosen
between 50 and 150 packets. Our goal is to identify the culprit
flows (with traffic bursts), culprit NF (where we inject interrupts),
or culprit NF-flow pairs (in the firewall case). We make sure the
injected problems are separate enough in time so we unambiguously
know the ground truth. We run our traffic for 5 seconds and collect
around 12.5 MB data in the run-time for each evaluation.
Accuracy metric. NetMedic reports a ranked list of possible cul-
prits. For comparison, we also rank different culprits by their scores,
and get the rank of the real culprits. Note that lower rank is better
here. In fact, the ideal diagnostic result would be the one where the
injected problem is flagged as the top culprit.

Overall accuracy. Figure 11 shows that Microscope outperforms
NetMedic. The two curves connect the rank of each victim packet
for the two algorithms, and they are independently sorted based
on the rank. Microscope reports rank of one for 89.7% of cases.
For the other 10% or so cases, there are always other culprits that
happen concurrently with the injected one. For example, when
we inject traffic bursts, sometimes interrupts occur at the same
time, and these two culprits both contribute to the performance
problem. For such scenarios, Microscope identifies other problems
as the top reason rather than the injected ones. On the other hand,
NetMedic reports rank of one for only 36% cases, and rank<5 for
only 66% cases. Next let us delve deeper into the three types of
injected culprits.

Diagnosing injected traffic bursts. Figure 12a shows the result
for victim packets affected by traffic bursts. For 99.8% of victim
packets, Microscope names the traffic burst as the most likely cause.
In contrast, NetMedic’s diagnosis is much less accurate. In fact,
only for 3.7% of victim packets NetMedic ranks the traffic burst as
the top one. For 39.9% of victim packets NetMedic ranks the traffic
burst the second-most likely culprit.

To understand why sometimes Microscope and NetMedic fail to
report burst as the most likely cause, we analyzed many such cases
manually. For Microscope, in most of these cases, there are other
culprits such as interrupts happening concurrently with the injected
traffic burst which also affect the packet performance significantly.
Microscope ranks some of these natural culprits before the injected
bursts, which is not totally incorrect. However, NetMedic almost
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always misdiagnoses the problem, because it is often misled by
the local processing rate. When a burst arrives at an NF, the local
processing rate is always much higher than the normal time, so
NetMedic ends up ranking the local problem as the top cause.
Diagnosing injected interrupts. Figure 12b shows the result for
victim packets affected by interrupts. For 85.0% of victim packets,
Microscope reports rank one for the interrupt. In contrast, NetMedic
only reports rank one for 52.8% of victim packets.

For cases where Microscope is not able to pinpoint injected inter-
rupts as the top reason, it is due to other events such as traffic bursts
or other interrupts that affect the outcome. In contrast, NetMedic
misdiagnoses a lot of cases. For example, due to the delay of impact
propagation (similar to the second example in § 2), NetMedic is
unable to correlate the victim with the interrupt (NetMedic still
gives it a rank because it gives every possible culprit a rank).
Diagnosing injected NF bugs. Figure 12c shows the result for
victim packets affected by the NF bug at Firewall 2. The bug is
ranked first for 73.0% cases by Microscope, and has rank no larger
than two for 95.5% cases. However, the bug is ranked first for only
63.3% cases by NetMedic, and all other cases have a rank larger
than 3. For those cases where Microscope assigns second rank
to the bug, Microscope ranks traffic bursts from the source first,
because in this experiment, we manually injected some traffic to
trigger bugs in the Firewall which increased the traffic rate. On the
other hand, NetMedic assigns fourth to sixth place to the real cause
for a large fraction of cases. In most of these cases, the problem
happens in VPNs which are propagated from the bug in the Firewall,
but NetMedic cannot correlate the bug triggering with the victim
packets because there is a time gap between the bug and the final
problem. Thus, it places the correct culprits lower that the other
possible culprits (such as the Monitor and the other four Firewalls).
Runtime overhead. We also test the overhead of our runtime
information collector by determining the degradation of the peak
throughput at NFs which we find to be between 0.88% and 2.33%
for different NFs. Note that this is the worst case overhead (under
peak throughput); in reality the overhead is lower since NFs do not
constantly run at the peak throughput.

NetMedic accuracy with different time window sizes. Fig-
ure 13 shows how the accuracy (the percentages of results that
rank the correct answer first) of NetMedic varies with different
time window sizes. For all window sizes, NetMedic achieves much
lower correct rate than Microscope (see Figure 11). Since NetMedic
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Figure 13: The correct rate of diagnosis when NetMedic is config-
ured with different time window sizes.

achieves the best correct rate when the window size is 10ms, we
use 10ms as the NetMedic window size in other experiments.

6.3 Detailed Evaluation

Impact of burst sizes: We first inject traffic bursts from the source
with different burst sizes, from 200 packets to 5000 packets. We
found that when the burst size is 5000 packets, Microscope names
the traffic burst as the most likely cause for all victim packets. As
the burst size decreases, the accuracy also decreases. The reason for
the accuracy decrease is that, when the burst size is small, it will
contribute less to the queue relative to other concurrently occurring
culprits.

Impact of interrupt lengths: We inject interrupts with different
lengths, from 300us to 1500us. We found that when the interrupt
length is 1500us, Microscope names the interrupt as the most likely
cause for almost all victim packets. However, as the interrupt length
decreases, the accuracy also decreases. It is because when the in-
terrupt length decreases, fewer packets are buffered due to the
interrupt, and so the contribution of the interrupt is smaller com-
pared to other concurrent culprits.

Impact of propagation hops: We inject different types of prob-
lems, and classify victim packets based on how many hops it takes
for the effect to propagate to the ultimate victim. We found that
as the number of hops increases, the accuracy of Microscope de-
creases. The reason is that, when problems propagate across hops,
concurrent culprits can also propagate to the same victim, and thus
the impact of the problem we inject is smaller.

6.4 Effectiveness of Pattern Aggregation

To demonstrate the effectiveness of pattern aggregation, we run
CAIDA traffic at 1.2 Mpps, and inject flows that trigger the bug at
Firewall 2. The bug-triggering flows are TCP flows from 100.0.0.1/32
to 32.0.0.1/32, with source TCP port number in [2000, 2008] and
the destination TCP port numbers in [6000, 6008]. The experiment
resembles the example in § 1. Note that Microscope has no explicit
information about the bug. Neither does it know about the flows
that trigger the bug.

Pattern aggregation presents concise results. There are a total
of 84K causal relations, and pattern aggregation aggregates them
to 80 different patterns. The run-time of the aggregation is around
three minutes. The number of patterns could be reduced by further
optimizations. For example, currently each port in [2000, 2008]
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100.0.0.1/32 32.0.0.1/32 6 2004 6004 fw2 => 100.0.0.1/32 * 6 1024-65535 80 w2
100.0.0.1/32 32.0.0.1/32 6 2008 6008 fw2 => 100.0.0.1/32 * 6 1024-65535 443  fw2
100.0.0.1/32 * 6 80 1024-65535 fw2 => 100.0.0.1/32 * 6 1024-65535 443  fw2
100.0.0.1/32 237.101.45.0/24 6 2005 6005 fw2 => 100.0.0.1/32 * 6 1024-65535 443  fw2
100.0.0.1/32 32.0.0.1/32 6 2004 6004 fw2 => 100.0.0.1/32 1.0.0.0/10 6 1024-65535 9339 fw2

Figure 14: A snippet of pattern aggregation result. Each row is
one pattern: <culprit 5-tuple> <culprit location> => <victim 5-tuple>
<victim location>

and [6000, 6008] is in separate patterns, because the raw hierar-
chical heavy hitter algorithm we use [25] only considers either
the static port range (1024-65536) or single port numbers. If we
provide adaptive port ranges, we expect to report fewer rules (e.g., a
single pattern with source port range of 2000-2008 and destination
port range of 6000-6008). Furthermore, operators can also tune the
threshold in the aggregation algorithm to adjust how many details
the report contains.

Pattern aggregation helps us identify the bug-triggering flows.
Figure 14 shows a snippet of the aggregation results. Four of the pat-
terns contain the bug-triggering flows as culprits. Such information
can be very helpful in diagnosing the bug.

Why pattern aggregation helps. Usually it is difficult to iden-
tify the bug-triggering flows because they are mixed with other
normal flows. But pattern aggregation is effective because it collec-
tively analyzes packets in all queuing period when the processing
rate is low. During these queuing periods, packets from the bug-
triggering flows appear from frequently than a random flow, so the
bug-triggering flows stand out in the pattern aggregation.

6.5 Running in the Wild

We now study how Microscope diagnose performance problems of
NFs without any injected bugs. We run a one-minute CAIDA traffic
at a high load (1.6Mpps, 64-byte packet size), and use Microscope
to diagnose the 99.9-th percentile latency (a total of 80K victim
packets). We find that diverse types of problems emerge at the high
load. We now present some interesting findings.

. Vietim |\ AT | Firewall | Monitor | VPN
Culprit
Traffic sources | 5.51% 1.43% 0.64% 3.56%
NAT 10.46% 1.84% 0.812% 0.64%
Firewall 0% 27.27% 2.49% 3.85%
Monitor 0% 0% 19.00% 0.89%
VPN 0% 0% 0% 21.60%

Table 2: Breakdown of problem frequencies based on culprits
and victims. Rows represent culprit NFs and columns represent
victim NFs. Numbers show the percentage of problems for each
[culprit—victim] pair. Bold numbers represents problems that
propagate across different NFs.

The victims caused by propagation is considerable. Asshown
in Table 2, 21.7% of all victim packets are caused by propagation, and
10.9% are caused by at least two-hop propagation*. This emphasizes
the importance of locating the right culprit location, which can
prevent blame game across operation teams managing different

421.7% is the sum of all cells in Table 2 that represent propagation. 10.9% is the sum of
cells that represents at least two-hop propagation.
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Figure 15: The CDF of the time gap between the culprit and the
victim of each causal relation.

NFs in the real world. Without Microscope, it is difficult to find the
right location.

Even though a large fraction of the culprits are local, Microscope
also provides very insightful diagnostic information for them, such
as the flow patterns (see § 6.4) and the timing.

The time gap between a culprit and its victim is highly vari-
able. Figure 15 shows the CDF of the time gap, which varies from
0 to 91 ms. While half of them are under 1.5 ms, the other half
spread almost evenly from 1.5 to 50 ms, with a long tail reaching
91 ms. This means for time-based correlation, it is very hard to find
the appropriate time window: a small window may miss the real
causal relations, while a large window includes lots of irrelevant
signals that mislead the correlation (both are observed when us-
ing NetMedic in § 6.2). This highlights the benefit of Microscope’s

W?Sibi’ﬁ%dsm%‘e can cause different levels of impacts.
As shown in Table 3, NAT1 and NAT3 cause more problems, at all
layers of NFs (we also observe such an uneven impact phenomenon
in other types of NFs). However, the traffic is evenly distributed
across different NATs. This suggests that many problems stem from
factors that exhibit temporal unevenness, such as interrupts and
temporal distribution of traffic.

Microscope is very helpful in diagnosing these problems, because

it provides and analyzes the queuing, which is the consequence of
temporal unevenness.
Some flows are more likely to cause problems. We perform
pattern aggregation, and find that the traffic bursts are comprised
of certain flow aggregates. Initially we suspected that the skew
was due to the skew in traffic: i.e., larger flow aggregates in the
traffic were more likely to appear in the bursts. However, when we
compared the flow aggregates in the bursts and the flow aggregates
over all traffic, we saw a significant difference. This means some
flows are more likely to form bursts and lead to problems.

Microscope provides very useful insights for diagnosing such
problems, such as the packet information in the queuing period.
Without them, it is very hard to diagnose.

7 DISCUSSION

Microscope could fail. In practice, Microscope cannot always get
the correct answer. Microscope could fail in the following cases: 1)
The expected rate r; of NFs is not measured correctly. 2) Microscope
fails to identify the path of packets by only using the IPID. 3) The
queuing period is not measured accurately due to the inaccuracy
of timestamps.
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—__Vietim | AT | Firewall | Monitor | VPN
Culprit

NAT1 329% | 0.68% 035% | 0.26%

NAT2 206% | 0.25% 0.12% | 0.05%

NAT3 2.92% | 0.66% 024% | 0.29%

NAT2 218% | 0.25% 0.10% | 0.04%

Table 3: Frequency differences for problems caused by different
NAT instances

Limitation of Microscope. Microscope can diagnose problems
from NFs that keep the IPID of the packet, since Microscope uses
IPID to identify the packet. Even if the IPID changes, there are
other ways to generate a unique ID per packet [22]. For those NFs
within which there is no one-to-one mapping for packets before
and after the processing of the NF (e.g., compression proxies, TLS
terminations), Microscope then cannot diagnose those NFs, but we
can still diagnose the NF chain before such NFs and that after such
NFs. Those NFs fundamentally require a white-box approach to
diagnose, which we cannot help for now.

Non-DPDK NFs and other network components. Note that
our implementation can collect data from all DPDK-supported NFs.
All other network components, including switches and NICs, are
treated as one component in our topology. If we also want to di-
agnose the problems in switches and NICs, we can treat them as
different components in the same way as NFs, and thus we also need
the data from queues in switches and NICs. When running NFs in
different machines, we need to align the timestamp of data from
different machines. This needs clock synchronization (microsecond
level), which is already supported in PTP and Huygens [5, 28].
Problems not caused by long queues. Long latencies or packet
drops could be caused by the long queue or the misbehaviors of
the NF. We only focus on long queues in our paper. For the case
of misbehaviors of NFs, the problem could be easily detected by
our trace: we can know the delay within the NF by checking the
timestamp difference of the packet in the input queue and the
output queue, and report that those packets with large in-NF delay
are caused by misbehaviors of NFs.

What if the queue is not empty in most cases? In our descrip-
tion of the algorithm, the start of a queuing period is when the
queue length exceeds zero, but this is not required. In fact, we can
also use a non-zero queue length threshold to define the start of
a queuing period, to handle the case when the NF queues may be
non-zero for a long time.

To implement Microscope with non-zero threshold, we just need
to read the queue length from the NIC and compare it with the
threshold. Unfortunately our NIC cannot report queue length, so
as a workaround, we use the batch sizes to infer whether the queue
is empty or not, which can only evaluate the threshold of zero. We
leave the evaluation of non-zero threshold to future work.

8 RELATED WORK

In this section, we discuss works related to Microscope. Given
the nature of network function virtualization, we discuss existing
solutions for performance diagnostics in the domain of networks
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and distributed systems®. But before going into direct comparisons
we’ll first discuss a few of the recent works on NFV performance
optimization and then discuss how Microscope is different from
existing works based on its ability to diagnose problems at fine-
grained timescales and across functions in service function chains.
Performance optimization: There has been a great effort on
performance optimization for NFV systems and distributed systems
in multi-tenant environments.

Performance optimization for distributed systems: Retro [44], Ernest
[52], and HUG [20] are some of the first efforts in this regard. These
systems are mainly focused on resource allocation optimization in
a distributed system.

NF service chain optimization: NFP [51] and Parabox [56] try to
reduce end-to-end latency by expliting parallelism in NFV chain.
NFVNice [42] proposes a service chain management framework.
It monitors loads of network functions to provide fair, efficient,
and dynamic resource scheduling. Metron [38] and Slick [14] do re-
source optimization while implementing an NF chain inside server
and network respectively by reducing inter-node communications
within each server.

NF performance optimization: NF performance optimization dis-
cussed here can be divided into three lines of work based on main
packet processing units, i.e., CPUs, GPUs, and FPGAs. Packet-
Shader [31], SSLShader [33], Kargus [32], NBA [39], APUNet [29],
and G-NET [55] leverage GPU to accelerate packet processing.
ClickNP [43], SwitchBlade [15] offload packet processing logic to
the FPGAs. RouteBricks [21], NetBricks [49] and E2 [48] propose
packet processing optimization techniques to improve performance
on CPUs. Besides leveraging accelerators, there has been some
work optimizing state management. OpenBox [18] decouples NFV
control plane and data plane, and Stateless Network Functions [34]
decouple stateless processing logic and data store.

For all the NF optimization works on CPUs, GPUs, and FPGAs,
clock cycles matter. With Microscope we provide a mechanism to
diagnose performance issues of deployed network functions in a
DAG at the granularity of hundreds/thousands of clock cycles. Now
we’ll discuss performance diagnostics works in NF and distributed
systems domain.

Performance diagnosis in networked systems: We divide the
diagnosis of networked systems into performance diagnosis for
VNFs and for traditional network systems.

For VNFs, PerfSight[53] and Probius[47] diagnose persistent
problems, like persistent high packet drop rate and long-term low
throughput, on software dataplane. Whereas Microscope can di-
agnose transient (microseconds scale) service function chain per-
formance problems. Perfsight uses packet drops and throughput
numbers as indicators of bottleneck network elements. Although
this is effective in identifying persistent bottleneck, it cannot diag-
nose problems at the tail (e.g., long tail latency, transient drops),
which is a big headache to operators. There is no way to identify

Diagnosing distributed system is different from diagnosing networked systems. Net-
worked systems’(VNFs, Routers etc.) packet processing has stricter per-packet latency
requirement (e.g., 10 100 us) than distributed systems’ per-request latency (ms level),
therefore same event(e.g., interrupt) can impact larger number messages(packets)
in Networked Systems than messages(requests) in distributed systems. For example,
an interrupt (100s us long) may be fine in a distributed system, but it can introduce
significant latency in servicing packets in networked systems. Furthermore, these
smaller problems can propagate across the network(§2)
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long latency in PerfSight, while transient drops themselves are
insufficient for PerfSight to give the detailed causal diagnosis as
provided by Microscope.

For traditional network systems, SCORE [41] focuses on identi-

fying root causes of network faults across different vertical layers
(e.g., across IP layer and optical link layer), but it cannot figure
out how faults propagate their impact across different network
elements, horizontally. Sherlock [16] builds a graph to model the
causal relationship between network components (e.g., routers,
hosts, links) and services, and use history monitoring data and
time-based correlation to predict probabilities of the causal rela-
tionship. But Microscope identifies transient performance issues at
smaller time granularity then Sherlock [16].
Performance diagnosis in distributed systems: There are sev-
eral distributed system diagnostic tools that use statistical correla-
tion of the logs [19, 46]. They face the same problem as NetMedic [36]
faces to perform diagnosis at low granularity. Similarly, Retro [44]
monitors and attributes the queuing delay to different users to quan-
tify the usage of users, which is similar to how Microscope monitor
the queue But beyond that, Microscope also derive ways to quantify
problem propagation, which is one of our key contributions

Apart from diagnostics tools there are distributed tracing tools
e.g, Jaegar([6], Zipkin [12] and [17, 26, 45]. They are good at under-
standing the causal relations between events that happen to the
same request. However, we need to understand the causal relations
between different packets, which needs to go beyond tracing. Mi-
croscope can diagnose problems across different packets at smaller
timescale and then correlate that information in the aggregation
stage (§4.4).

9 CONCLUSION

In this paper we presented Microscope to diagnose network perfor-
mance issues. First, we showed how stringent performance require-
ments of VNFs can create a lasting impact across time and network
functions causing latency and throughput issues for downstream
VNFs. We then presented the design and the implementation of
Microscope that can be used to diagnose such problems, based on
the key insight of analyzing the queuing periods. This was followed
by evaluation in a testbed of realistic service function chain where
we used Microscope to diagnose several performance issues for
realistic traffic scenarios. Specifically, we demonstrated that Micro-
scope can diagnose performance problems caused by interrupts,
software bugs, traffic bursts, resource exhaustion etc. accurately
and correctly across a chain of various network functions. To the
best of our knowledge Microscope is the first work that shows how
microsecond level events can degrade performance several hops
away, and how these problems can be diagnosed quickly with low
overhead. While Microscope is not a panacea, we believe it can
help operators in reaping benefits provided by virtualization while
maximizing performance.
This work does not raise any ethical issues.
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